p700 #1-8
p701 #1-13
In this investigation, you learned how to solve quadratic equations using the quadratic formula and to build a quadratic given its roots. These questions will help you summarize what you have learned.

1. Complete the following for each equation.
 - Make a table of inputs and outputs. Use at least five different inputs.
 - Sketch each graph on a separate grid using the table.
 - Find the points where each graph crosses the x-axis.
 a. \(x^2 - 2x - 4 = y \)
 b. \(3x^2 - 2x - 5 = y \)
 c. \(x^2 - 6x + 9 = y \)
 d. \(2x^2 + 4x + 3 = y \)

2. Find a value of \(k \) such that \(2x^2 - 3x + k \) has each solution set.
 - a. two real-number solutions
 - b. one real-number solution
 - c. no real-number solutions

\[
X^2 - \frac{3}{2}X + \frac{k}{2} = \left(\frac{3}{4} \right)^2 - \frac{9}{16}
\]

\[
\frac{k}{2} = \frac{9}{16}
\]

\[
k = \frac{9}{8}
\]

3. Find a quadratic equation with the following roots.
 - a. 4 and \(-5\)
 - b. \(3 + \sqrt{2}\) and \(3 - \sqrt{2}\)

4. Factor the following nonmonic polynomials by writing them as monic polynomials in \(\mathbb{Z} \).
 - a. \(2x^2 - 5x - 12\)
 - b. \(6x^2 + 25x + 25\)
 - c. \(4x^2 + 8x - 5\)
 - d. \(9x^2 + 12x + 4\)

5. Factor the following quadratic expressions using the quadratic formula.
 - a. \(4x^2 + 12x + 5\)
 - b. \(6x^2 - 5x - 4\)

6. How can I solve any quadratic equation?

7. How can I factor any quadratic polynomial?

8. How are the roots of a quadratic equation related to its coefficients?

Vocabulary

In this investigation, you learned these terms. Make sure you understand what each one means and how to use it.

- algorithm
- monic
- nonmonic

Quadratic functions of the form \(f(x) = ax^2 + bx + c \) use various \(a, b, \) and \(c \) values to model different parabolic paths.
Mathematical Reflections p. 700

1a–d. See graphs for input-output pairs.

1a.
\[y = (x-1)^2 - 5\]

Crosses x-axis at \[x = 1 \pm \sqrt{5}\]

1b.
\[y = x^2 - 4x - 5\]

Crosses x-axis at \[x = \frac{5}{3}\] and \[x = -1\]

1c.
\[y = (x-3)^2 + 1\]

Meets x-axis at \[x = 3\].

1d.
\[y = (x+3)^2 - 9\]

Does not cross x-axis.
Answers

Mathematical Reflections

1. See back of book.

2. a. \(k < \frac{9}{8} \)
 b. \(k = \frac{9}{8} \)
 c. \(k > \frac{9}{8} \)

3. a. \(x^2 + x - 20 = 0 \)
 b. \(x^2 - 6x + 7 = 0 \)

4. a. \((2x + 3)(x - 4) \)
 b. \((3x + 5)(2x + 5) \)
 c. \((2x + 5)(2x - 1) \)
 d. \((3x + 2)(3x + 2) \) or \((3x + 2)^2 \)

5. a. \((2x + 5)(2x + 1) \)
 b. \((3x - 4)(2x + 1) \)

6. by using the quadratic formula

7. Answers may vary. Sample:
 Rewrite the polynomial as a monic polynomial in \(z \), and then factor that monic polynomial.

8. If the quadratic equation is \(ax^2 + bx + c = 0 \), then the sum of the roots is \(\frac{-b}{a} \) and the product is \(\frac{c}{a} \).
Multiple Choice

1. The equation \(5x^2 - 4x + k = 0\) has exactly two real-number solutions. Which of the following could NOT be the value of \(k\)?
 A. 0
 B. 1
 C. -1
 D. \(\frac{1}{2}\)

2. Which quadratic equation has roots \(1 + \sqrt{7}\) and \(1 - \sqrt{7}\)?
 A. \(x^2 + 7x - 1 = 0\)
 B. \(x^2 + 2x + 8 = 0\)
 C. \(x^2 - 2x - 6 = 0\)
 D. \(x^2 + 6x - 2 = 0\)

3. Which of the following are the solutions of \(3x^2 = x + 2\)?
 A. \(-\frac{2}{3}\) and 1
 B. 2 and 3
 C. 2 and -3
 D. \(\frac{2}{3}\) and -1

4. How many times does the graph of \((x - 2)^2 - 1 = y\) cross the x-axis?
 A. 0
 B. 1
 C. 2
 D. 3

5. Factor \(4x^2 + 5x - 6\).
 A. \((2x + 3)(2x - 2)\)
 B. \((4x + 3)(x - 2)\)
 C. \((2x + 1)(2x - 6)\)
 D. \((4x - 3)(x + 2)\)

6. Two positive integers have a sum of 25. Which of these could be their product?
 A. 10
 B. 26
 C. 46
 D. 25

Open Response

7. Use the quadratic formula to solve \(5x^2 - 3x - 1 = 0\).

8. a. Find two numbers with a sum that is 1 and a product that is -1.
 b. Verify that your results have a sum of 1 and a product of -1.

9. Find a quadratic equation with roots \(3 + 2\sqrt{2}\) and \(3 - 2\sqrt{2}\).

10. Factor \(6x^2 + 11x - 10\).

11. Solve \((x + 2)(2x - 7) = -15\).

12. Find the value of \(k\) such that \(9x^2 - 12x + k = 0\) will have exactly one solution.

Challenge Problem

13. The roots of the quadratic equation \(ax^2 + bx + c = 0\) are \(p\) and \(q\). The roots of the quadratic equation \(cx^2 + bx + a = 0\) are \(r\) and \(s\). \((a, b,\) and \(c\) are not zero). Compute \(pqr\), the product of all four roots.
\[x = 3 \quad x = 5 \]

\[(x - 3)(x - 5)\]
\[ax^2 + bx + c = 0 \]

Sum of Roots = \(-\frac{b}{a} \)

Product of Roots = \(\frac{c}{a} \)

Line Sym = \(\frac{-b}{2a} \)
Mid-Chapter Test

7. \(x = \frac{3 \pm \sqrt{29}}{10} \)
8. a. \(x = \frac{1 \pm \sqrt{5}}{2} \)
 b. \[\frac{1 + \sqrt{5}}{2} + \frac{1 - \sqrt{5}}{2} = 1; \]
 \[\left(\frac{1 + \sqrt{5}}{2} \right) \left(\frac{1 - \sqrt{5}}{2} \right) = -1 \]
9. \(x^2 - 6x + 1 = 0 \)
10. \((3x - 2)(2x + 5) \)
11. \(x = 1 \) or \(x = \frac{1}{2} \)
12. \(k = 4 \)
13. \(pqrs = 1 \) as long as neither \(a \) nor \(c \) is zero.

\[\frac{1}{2} + \frac{\sqrt{5}}{2} + \frac{1}{2} - \frac{\sqrt{5}}{2} = 1 \]
\[\frac{1}{2} + \frac{1}{2} = 1 \]
\[\frac{1 - \sqrt{5}}{4} = \frac{-1}{4} = -\frac{1}{4} \]