Identify Direct Proportion from an Equation.

When y is directly proportional to x, you can write $\frac{y}{x} = k$. You can use algebra to write another form of this equation, giving y in terms of x. For example, when $k = 2$, you can multiply both sides of the equation $\frac{y}{x} = 2$ by x to get the equivalent equation $y = 2x$.

\[
\frac{y}{x} = 2 \quad \text{Write an equation.}
\]
\[
x \cdot \frac{y}{x} = x \cdot 2 \quad \text{Multiply both sides by } x \text{ to undo the division of } y \text{ by } x.
\]
\[
y = 2x \quad \text{Simplify.}
\]

You can also use algebra to decide if an equation represents a direct proportion.

Think Math

In the equation $y = 2x$, x represents pounds of strawberries, and y represents the cost of strawberries. How can you use the equation to find the cost of buying 10 pounds of strawberries?
Example 2 Tell whether quantities are in direct proportion from an equation.

Tell whether each equation represents a direct proportion. If so, identify the constant of proportionality.

\[a) \frac{1}{2} y = 3x \cdot 2 \]

\[y = 6x \]

Yes! COP \(k = 6 \)

Solution

\[\frac{1}{2} y = 3x \]

\[2 \cdot \frac{1}{2} y = 2 \cdot 3x \]

\[y = 6x \]

Multiply both sides by 2.

Simplify.

Because the original equation \(\frac{1}{2} y = 3x \) can be rewritten as an equivalent equation in the form \(y = kx \), it represents a direct proportion. The constant of proportionality is 6.
Guided Practice

Tell whether each equation represents a direct proportion. If so, identify the constant of proportionality.

3. \(0.4y = x\)

\[
\begin{align*}
0.4y &= x \\
\frac{0.4y}{x} &= \frac{x}{x} \\
y &= \text{?}
\end{align*}
\]

Divide both sides by \(x\).

Simplify.

Because the original equation \(0.4y = x\) can be rewritten as an equivalent equation in the form \(y = kx\), it is a direct proportion. The constant of proportionality is \(\frac{5}{2}\).
Tell whether each equation represents a direct proportion. If so, find the constant of proportionality.

4 \[x = 1 - 2y \]

\[
\begin{align*}
x &= 1 - 2y \\
x + 2y &= 1 - 2y + 2y \\
x + 2y - \ ? &= 1 - \ ? \\
2y &= 1 - \ ? \\
\frac{2y}{?} &= \frac{1}{?} \\
y &= \ ?
\end{align*}
\]

Add 2y to both sides.

Subtract \(?\) from both sides.

Simplify.

Divide both sides by \(?\).

Simplify.

Because the original equation \(x = 1 - 2y \) ___, be rewritten as an equivalent equation in the form \(y = kx \), it ___ a direct proportion.

Think Math

Adam says the equation \(5y + 2y = 7 \) represents a direct proportion. Susan disagrees with him. Who is correct?
Recognize that a Constant of Proportionality can be a Unit Rate.

The constant of proportionality in a direct proportion often represents a unit rate. For instance, in the example about buying strawberries, the constant of proportionality 2 represents the unit cost of the strawberries. The total cost of the strawberries, \(y \), is the product of the unit cost and the weight of the strawberries purchased, \(x \) pounds.

So, the equation of the direct proportion is: \(y \) dollars = \(\frac{\$2}{1 \text{ pound}} \) \cdot x \text{ pounds}

\[y = 2x \]
Example 3 Identify a constant of proportionality from a table.

The table shows the price, P dollars, for x cans of soup. P is directly proportional to x.

Find the constant of proportionality and tell what it represents in this situation. Then write a direct proportion equation.

<table>
<thead>
<tr>
<th>Number of Cans (x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price (P dollars)</td>
<td>1.60</td>
<td>3.20</td>
<td>4.80</td>
</tr>
</tbody>
</table>

$k = 1.60$ represents the cost of 1 can of soup

$p = k \cdot x$

$p = 1.60 \cdot x$

Solution

Constant of proportionality: $\frac{1.60}{1 \text{ can}} = 1.6$

The constant of proportionality is 1.6 and represents the cost, in dollars, per can of soup. The direct proportion equation is $P = 1.6x$.
Guided Practice
Copy and complete.

5 The table shows the number of baseballs, \(y \), made in \(x \) days. The number of baseballs made is directly proportional to the number of days of production. Find the constant of proportionality and tell what it represents in this situation. Then write a direct proportion equation.

<table>
<thead>
<tr>
<th>Number of Days ((x))</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Baseballs ((y))</td>
<td>56</td>
<td>112</td>
<td>168</td>
</tr>
</tbody>
</table>

Constant of proportionality: __?
The constant of proportionality is __ and represents __.
The direct proportion equation is __.

\(K = 56 \)
\# of balls made per day
\(y = 56x \)
Example 4 Identify a constant of proportionality in a verbal description.

Alina is buying some baseball caps. Each cap costs $8. The amount Alina pays for the caps is directly proportional to the number of caps she buys. Write an equation that represents the direct proportion.

\[\eta = \# \text{ of caps} \]
\[C = \text{total cost} \]
\[C = 8 \eta \]

Solution

Let \(x \) be the number of baseball caps Alina buys.
Let \(y \) be the amount she pays.

Cost per baseball cap: $8 per cap.

The direct proportion equation is \(y = 8x \).
Guided Practice
Copy and complete.

A cafeteria sells sandwiches for $4 each. The amount Jason pays for some sandwiches is directly proportional to the number he buys. Write an equation that represents the direct proportion.

Let $___$ be the number of sandwiches.
Let $___$ be the amount Jason pays.

Cost per sandwich: $____\$ per sandwich

The direct proportion equation is $______ = ____\$.
Example 5 Identify the constant of proportionality in an equation.

Solve. Show your work.

\(y \) is directly proportional to \(x \), and \(y = 3 \) when \(x = 9 \). Find the constant of proportionality. Then write a direct proportion equation.

Since \(y \) is directly proportional to \(x \), you can use \(\frac{y}{x} = k \) to find the constant of proportionality, \(k \).

\[
\frac{y}{x} = k \quad \frac{3}{9} = k \quad \frac{1}{3} = k
\]

\[y = \frac{1}{3} x\]

Solution

Constant of proportionality: \(\frac{y}{x} = \frac{3}{9} \)

\[= \frac{1}{3} \quad \text{Write in simplest form.}\]

The constant of proportionality is \(\frac{1}{3} \).

The direct proportion equation is \(y = \frac{1}{3} x \).
Guided Practice

Copy and complete.

7. \(q \) is directly proportional to \(p \), and \(p = 12 \) when \(q = 24 \). Find the constant of proportionality. Then write a direct proportion equation.

\[q = 2p \]

\[K = \frac{24}{12} = 2 \]

Constant of proportionality: \(\frac{q}{p} = ? \)

\[= ? \]

Write in simplest form.

The constant of proportionality is ___.
The direct proportion equation is ___.

Solve.

8. \(w \) is directly proportional to \(h \), and \(w = 18 \) when \(h = 3 \). Find the constant of proportionality. Then write a direct proportion equation.