11. The length of \(\frac{2}{3} \) of a rope is \((4u - 5)\) inches. Express the total length of the rope in terms of \(u \).

\[\left(6u - \frac{15}{2} \right) \text{ in.} \]

12. If 50 lb = 22.68 kg, what is \(\frac{15}{8} \) pounds in kilograms? 0.8505 kg or \(\frac{1701}{2000} \) kg.

13. The minute hand of a clock makes one complete round every 60 minutes. How many rounds does the minute hand make in \(650x \) minutes?

\[\frac{65}{6} \times \text{rounds or } 10.83x \text{ rounds} \]

14. Fifteen cards are added to \(n \) cards. 6 people then share the cards equally. Express the number of cards for each person in terms of \(n \).

\[\frac{1}{6} (n + 15) \text{ cards or } \left(\frac{1}{6} n + \frac{5}{2} \right) \text{ cards} \]

15. The pump price was \(g \) dollars per gallon of gasoline yesterday. The price increases by 10 cents per gallon today. If a driver pumps 12.4 gallons of gasoline today, how much does he have to pay?

\((12.4g + 1.24)\) dollars.
<table>
<thead>
<tr>
<th>Statement</th>
<th>Expression with Error</th>
<th>Description of Error</th>
<th>Correct Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>35% of s plus 65% of t</td>
<td>$s + t$</td>
<td>Percents are not shown</td>
<td>$0.35s + 0.65t$</td>
</tr>
<tr>
<td>$\frac{1}{6} x$ subtracted from $\frac{1}{6} y$</td>
<td>$\frac{1}{6} x - \frac{1}{6} y$</td>
<td>Subtraction done in the wrong way</td>
<td>$\frac{1}{6} y - \frac{1}{6} x$</td>
</tr>
<tr>
<td>One more than half of n</td>
<td>$1 + \frac{1}{2} n$</td>
<td>Adding n instead of 1 to half n</td>
<td>$\frac{1}{2} n + 1$</td>
</tr>
<tr>
<td>$\frac{2}{3} x$ divided by $\frac{1}{5}$</td>
<td>$\frac{2}{15} x$</td>
<td>Multiplying instead of dividing</td>
<td>$\frac{10}{3} x$</td>
</tr>
</tbody>
</table>
17. The ratio of red counters to blue counters is $9:11$. There are y blue counters. Express the number of red counters in terms of y.

18. When 18 boys joined a group of y students, the ratio of boys to girls in the group became $4:5$. Write an algebraic expression for the number of girls in terms of y.

$$\frac{5}{9}(y + 18) \text{ girls or } \left(\frac{5}{9}y + 10\right) \text{ girls}$$

17. Red counters:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Blue counters:

\[\frac{9}{11}y \] or \[\frac{1}{2}y \]

\[9 \cdot \frac{1}{11}y = \frac{9}{11}y \]

The number of red counters is $\frac{2}{11}y$.

\[9 \text{ red} \rightarrow 9 \cdot \frac{9}{11}y = \frac{9}{11}y \]

OR

\[\frac{9}{11}y \]
19 Adrian is x years old. Benny is 7 years younger than Adrian. In 5 years' time, Benny will be twice the age of Celine. How old is Celine now in terms of x?

\[\begin{align*}
A &: \quad x \\
B &: \quad x - 7 \\
C &: \quad (\frac{1}{2}x - 1) - 5
\end{align*} \]

\[\begin{align*}
(X-7)+5 &= X-2 \\
\frac{x-2}{2} &= \frac{x}{2} - \frac{2}{2} = \frac{1}{2}x - 1
\end{align*} \]

19. Now $\frac{1}{2}x - 6$

20 A group has an equal number of adults and children. When n oranges are given to the group, each adult gets two oranges while each child gets one orange and there are still 5 oranges left. Write an algebraic expression for the number of oranges given to the adults.

\[\begin{align*}
A &: \quad 2 \\
C &: \quad 1
\end{align*} \]

\[\frac{2}{3} (n - 5) \]

\[\left(\frac{2}{3}n - \frac{10}{3}\right) \] oranges
19 Adrian is x years old. Benny is 7 years younger than Adrian. In 5 years’ time, Benny will be twice the age of Celine. How old is Celine now in terms of x?

\[
\frac{1}{2}x - 6 \text{ years old}
\]

20 A group has an equal number of adults and children. When n oranges are given to the group, each adult gets two oranges while each child gets one orange and there are still 5 oranges left. Write an algebraic expression for the number of oranges given to the adults.

\[
\frac{2}{3}(n - 5) \text{ oranges or } \frac{2n - 10}{3} \text{ oranges}
\]
21 The list price of a camera was \(w \) dollars. Paul bought the camera for $35 less than the list price. If the sales tax was 8%, how much did Paul pay for the camera including the sales tax? \((1.08w - 37.8) \) dollars

22 There were \(m \) visitors in an exhibition on the first day and 1,200 fewer visitors on the second day. On the third day, the number of visitors was 30% greater than the number of visitors on the second day. What was the average number of visitors over the three days? \(\frac{1}{3}m + \frac{2}{3}(m-1200) + \frac{3}{3}(1.30(m-1200)) \) visitors
23 A man drove x miles per hour for 3 hours and \((2x - 60)\) miles per hour for the next 4.75 hours.

a) Express the total distance he traveled in terms of x. \((12.5x - 285)\) mi

b) If \(x = 64\), what is the total distance he traveled? 515 mi (610 mi.)

\[
3x + 4.75(2x-60) \\
3x + 9.5x - 285 \\
12.5x - 285 \\
12.5(64) - 285 = 515 \text{ mi}
\]